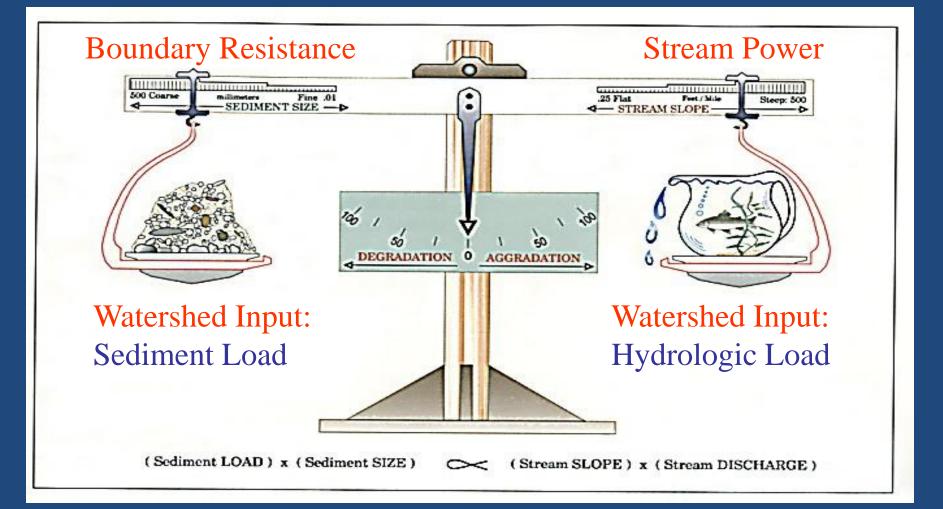
Avoiding the impacts of river management through river corridor and floodplain protection

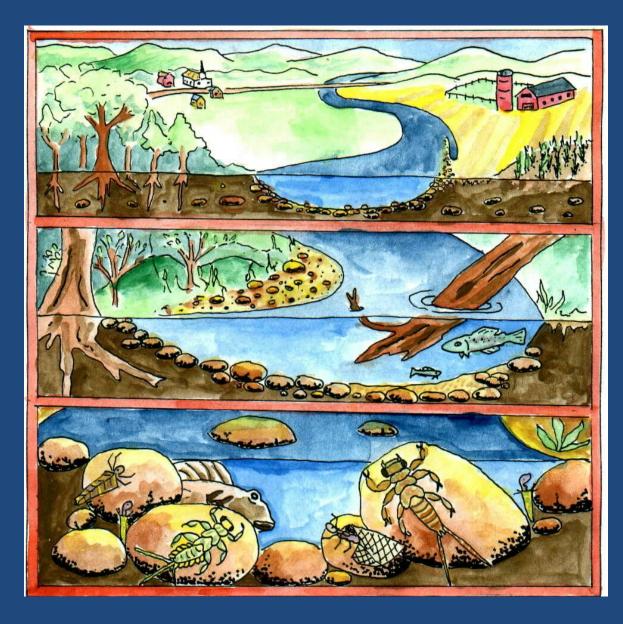
Mike Kline Vermont ANR

Rivers Program

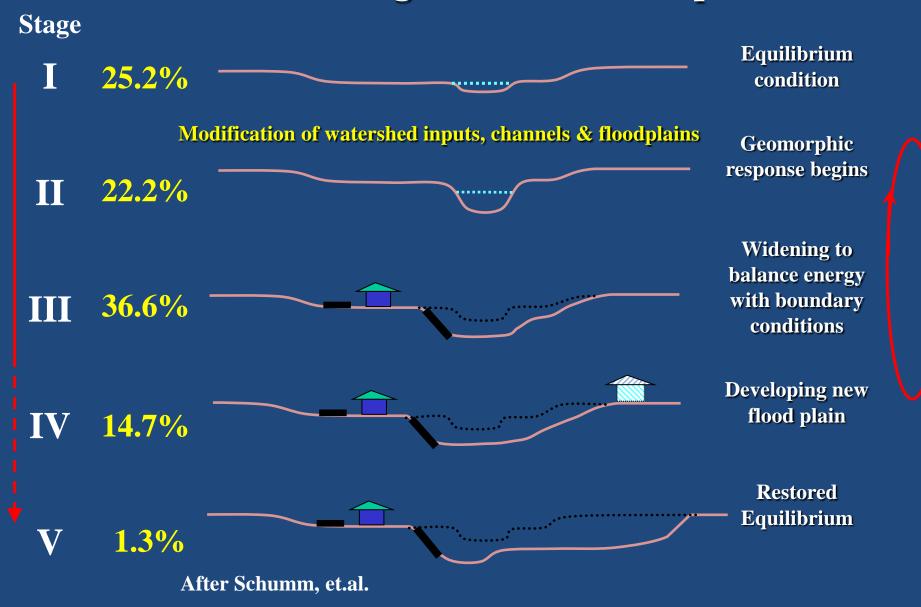

Program Goal: achieve an economically and ecologically sustainable relationship between human investments and the dynamics of rivers.

Working with (not against) fluvial processes and using avoidance strategies, to maximize:

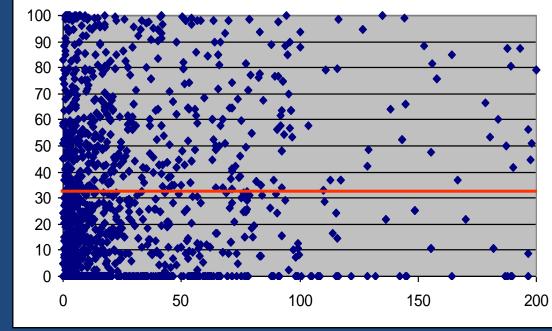
property protection
water quality
ecosystem integrity

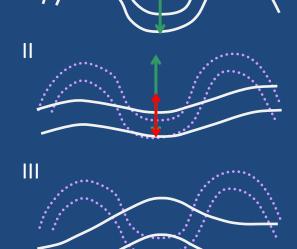


Managing Toward Equilibrium


Analyze stream sensitivity and departures from equilibrium & consequences of an uneven stream energy / sediment distribution

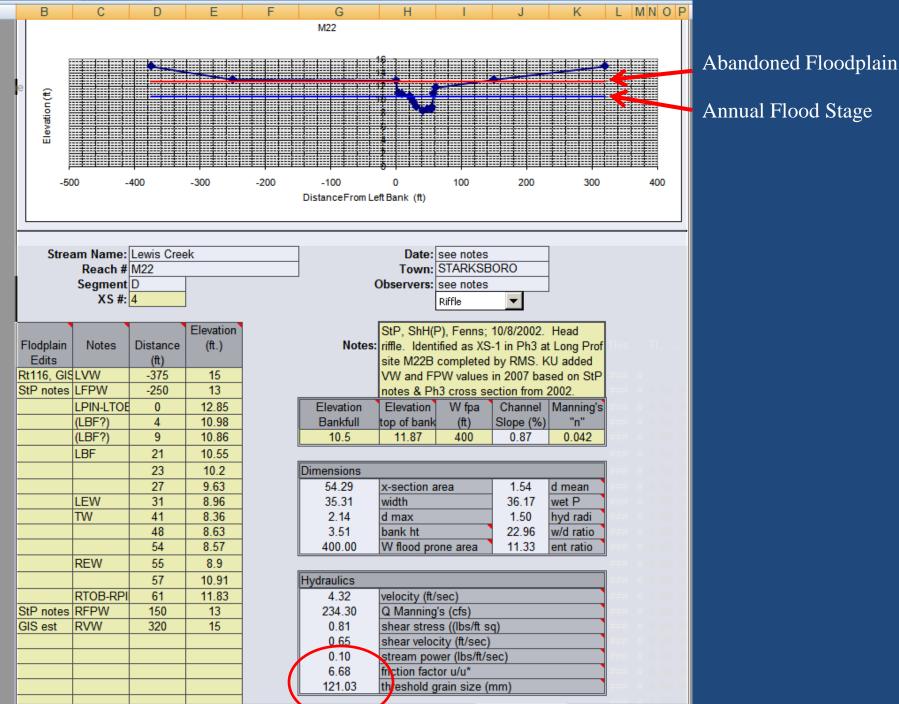
VTANR Stream Geomorphic Assessment Program


Watershed – Phase 1 Land use, Riparian, Channel and Floodplain **Modifications** Reaches – Phase 2 Condition - Departure **Adjustments - Evolution** Sensitivity - Rate Sites – Phase 3 **Hydraulics Sediment Transport** Habitat Assessment Bridge/Culvert/Dam


73.5% Assessed Streams in Disequilibrium Lacking Access to a Floodplain

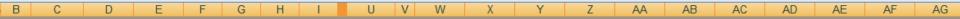
On average **31.4%** of Vermont assessed streams have been historically straightened and channelization.

Stages II and III of planform evolution



Watershed Size (sq. miles)

Alteration of Hydrologic, Sediment and Large Wood Regimes Departures in the size, quantity, sorting, and storage of materials



🖌 Segment Slopes 🚽 Segment Pebble Counts 🚽 Segment A XS 📉 Segment B 😹 🦯 Segment C XS 📜 Segment D XS 🖉 Dimension Data Converter

► H Z

А

Pebble Count Worksheet

Pebble Count Work	ksheet																
						Stream Name:				see notes		,					
						Reach #:	M22		Town:	STARKSBO	RO	J					
Material	Size Range (mm)	Seg A	Seg B	Seg C	Seg D												
silt/clay	0 0.062			2			Riffle/Step Pebble Count										
very fine sand	0.062 0.125		22	14	12												
fine sand	0.125 0.25			5	2	100% ¬											
medium sand	0.25 0.5		4		1		<++			╡╷┝┿╴╺━╢		╞┿┥╺━┤╼┥					
coarse sand	0.5 1		3	3	3	90% -			-++++	+++++	-+++++		- XI MI		++++++	+ $+$ $+$ $+$ $+$	+++
very coarse sand	1 2		6	1		80% -							ANI				Ш
very fine gravel	2 4		4	3	2								/ / / I/II				
fine gravel	4 6		6	1	1	E 70% -					-+++++		/ / 		+++++	+++++	
fine gravel	6 8		4	3	5	- %00 Hungar - %00 - 10 Hungar - %00 - 10 Hungar			_	+++++			- /			+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	HH
medium gravel	8 11		7	2	9	.≝ 50% -							XIIIII				
medium gravel	11 16		6	9	6												
coarse gravel	16 22		7	4	8	5 40% -									++++++	+	
coarse gravel	22 32		14	19	7	te 40% -											<u> </u>
very coarse gravel	32 45		14	7	12							ИИ					
very coarse gravel	45 64		10	11	13	20% -							<u>«</u>				
small cobble	64 90		3	10	11	10% -						╎╽╸╅┟╸╽		••	++++++	++++	₩
medium cobble	90 128		1	3	11	0% -			≚ ▲			k 🗒 📍 🕅 1		* * •			
large cobble	128 180			3	11			-									
very large cobble	180 256				2	0.0	01	0.1		1	Particle	10 e Size (mm	ຸ 10	0	1000		10000
small boulder	256 362				1						Faiticit	e Size (mini)				
small boulder	362 512					Percent	t Item Seg A		Percen	t Item Seg B		x Percent	Item Seg C	1	 Percent 	t Item Seg D	
medium boulder	512 1024					Cumula	tive Percent S	Seg A	Cumula	ative Segment	в -		tive Percent S	Seg D 🚽		ative Percent	Seg D
large boulder	1024 2048																-
very large boulder	2048 4096							Size per	rcent less th	nan (mm)			Percen	nt by substr	ate type		
bedrock							D16	D35	D50	D84	D95	silt/clay	sand	gravel	cobble	boulder	bedrock
	Total Particles:	0	111	100	117	Segment A											
						Segment B	0.109	3.897	10.753	41.063	60.600	0%	32%	65%	4%	0%	0%
Notes:	Pebble counts transfe	erred fro	m Ph3 w	orkshee	ts.	Segment C	0.125	11.468	23.341	64.000	101.212	2%	23%	59%	16%	0%	0%
						Segment D	2.567	15.950	34.356	110.046	164.782	0%	15%	54%	30%	1%	0%
														•			

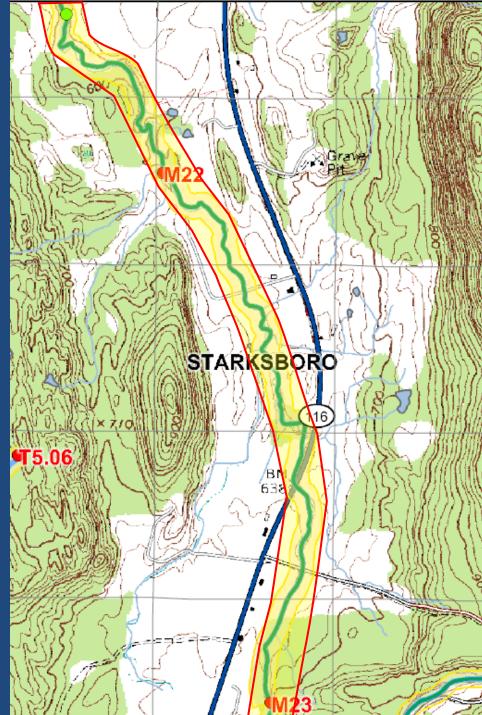
Reach Incision converts dominate process from depositional to sediment transport

Threshold Grain Size = 121mm (Phase 3 verification) Functioning floodplains and river corridors create an intersection for the protection of public values

Public Safety and Property Protection

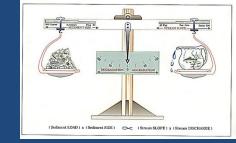
Avoidance Strategies to Protect Floodplains & Stream Equilibrium Ecological Integrity and Fish & Wildlife Resource

Water Quality and Quantity


River Corridor Planning

Watershed Strategies:

Drainage and Stormwater Management Gully and Erosion Control Floodplain / River Corridor Protection Buffer Establishment and protection Road-Stream Crossing Retrofits / Replacements Reach-scale River Corridor Easements Reach-scale River Corridor Restoration Projects


Reach-specific Protection and Restoration Projects:

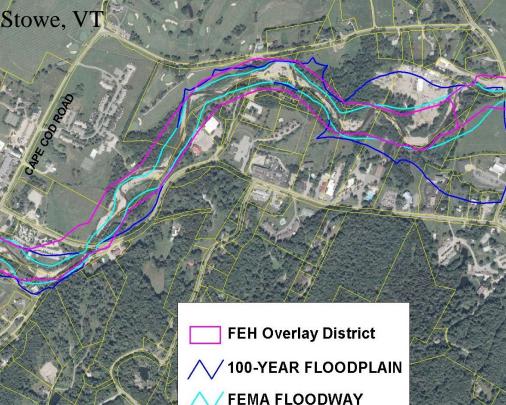
Protect River Corridors Plant Stream Buffer Stabilize Stream Bank Arrest head cuts and nick points Remove Berms and other constraints to flood and sediment load attenuation Remove/Replace Structures (e.g. undersized culverts, constrictions, low dams) Restore Incised Reach Restore Aggraded Reach

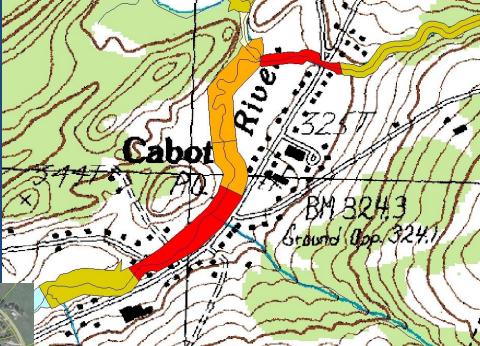
River Corridor Planning Maps

Watershed Scale Stressors

Hydrologic - Land use, stormwater, divisions, flow regulation, dams

Sediment Load - Land Use, depositional features, bank erosion, mass failures & gullies, upstream incision, and tributary rejuvenation

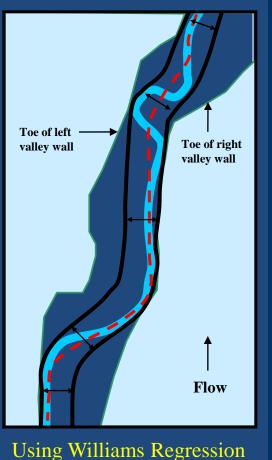

Reach Scale Stressors


Stream Power - Channelization, berms, dredging, grade controls, encroachments, head cuts, beaver dams

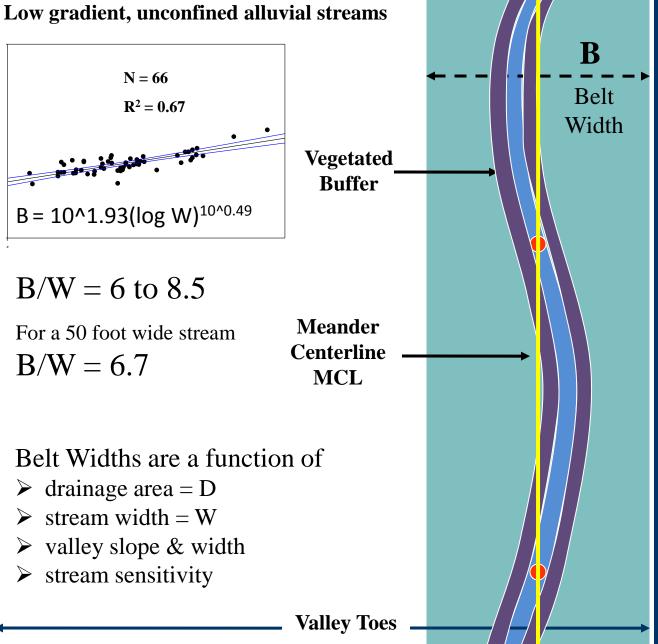
Boundary Condition - Buffers, grade controls, erosion, bed/bank materials, snagging, windrowing

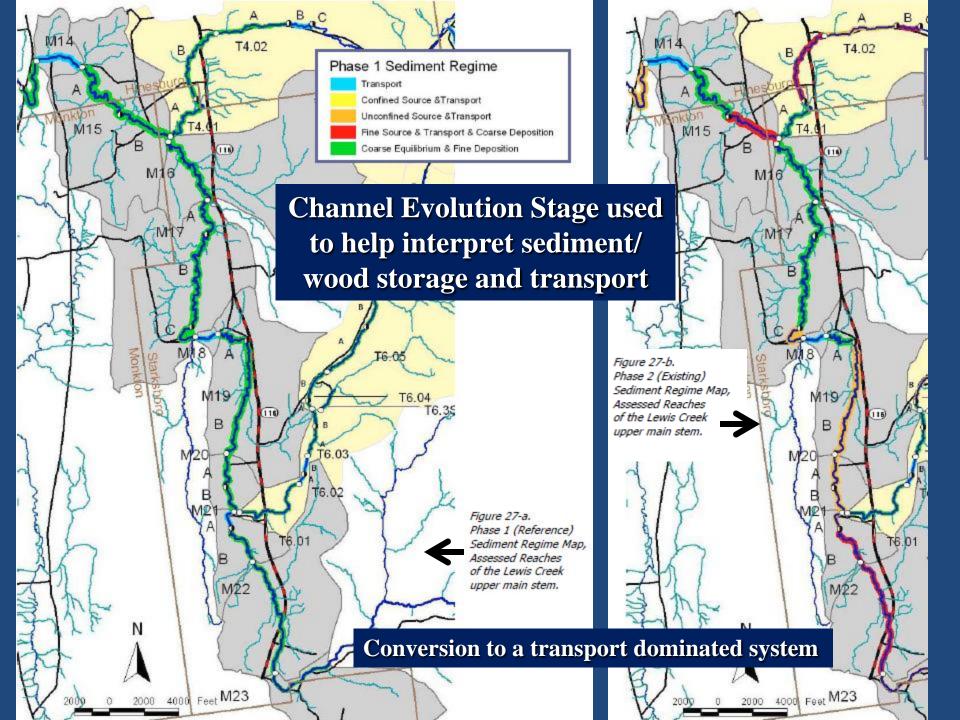
SGAT – Stream Geomorphic Assessment Tool

ArcGIS program to index features and draw belt width-based river corridors



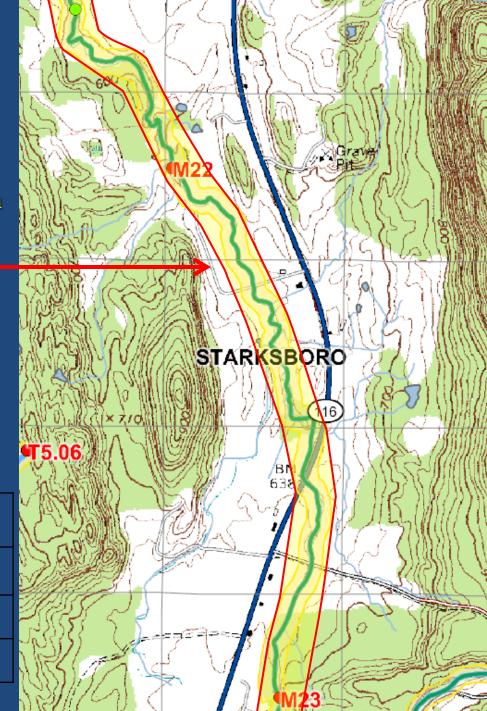
River Corridors are


designed to assist in managing toward, protecting, and restoring the fluvial geomorphic equilibrium condition of Vermont rivers; and to avoid conflicts between human investments and river dynamics in an economically and ecologically sustainable manner.


Belt Width $B = 3.7W^{1.12}$ Williams, 1986

Meander width ratio B/W = 5 to 6 channel widths

Vermont Meander Width Ratios



River Corridor Protection

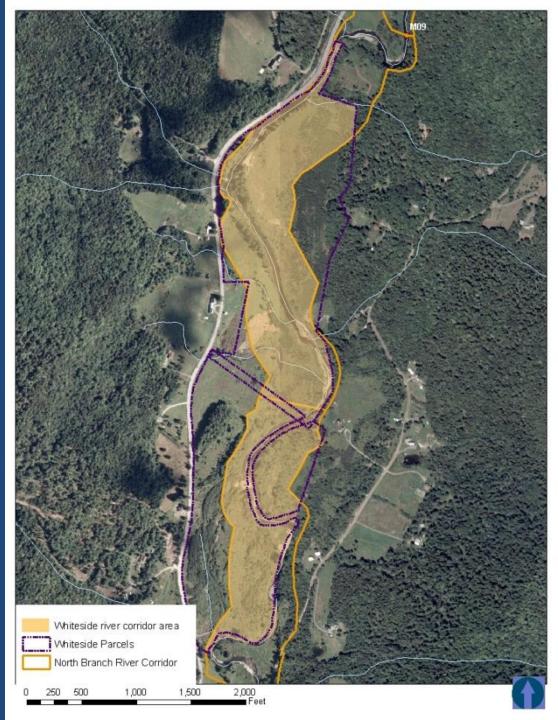
Fluvial Erosion Hazard (FEH) Area developed for municipality for their use in land use planning & regulation

- FEH Overlay District
- Model FEH bylaws
- Pre-Disaster Mitigation Plan
- Municipal Incentives

Communities w/ river corridor plans	170
FEH projects underway or completed	60
Draft FEH maps completed	81
FEH maps adopted as an ordinance	15

River Corridor Easement used to secure:

Channel Management Rights


≻Riparian Buffer

Corridor Development Rights

31 easements with 722 acresclosing on another10 easements with 170 acres

Protecting Key Attenuation Assets

Cessation of channelization to increase/allow for sediment storage at key watershed locations

Town Name : CAMBRIDGE			Concern for structure due to	Potential Failure Mode due to structure / geomorphic incompatibility			Structure Dam	Existing Problems 1. Upstream sediment deposit present 2. Scour and/or erosion present						
			Fluvial condition or process	Out- flanking	Scour	Ice or Debris Jam	Flooding of Adjacent Property	Erosion of Adjacent Property	3. Inlet Obstruction present 4. Poor location or alignment 5. Beaver Activity % bankfull					
Structure#: Road Name:		Stream Name:							1	2	3	4	5	width
VT07-06-03	HOGBACK RD	Judevine Brook			V	V	N N	X		v			1	55.56%

Judevine Brook Culvert

Geomorphically Incompatible Blocks Aquatic Organism Passage

Culvert Aquatic Organism and Wildlife Passage Report - Potential Barriers to Movement and Migration

Town Name:			1.	Aquatic C	Terrestrial Wildlife						
			Culvert Bloc Organism Pa		Culvert Potentially Blocks AOP	Culvert Does Not Block AOP	Structure Potentially Blocks Terrestrial Wildlife Movement			Potential for / or Evidence	Species Observed via Roadkill or Wildlife signs
			stream	All Fish and stream salamanders	All Fish and stream salamanders	All Fish and stream salamanders	Small Wildlife (herps, small	Medium Wildlife (fisher, otter,	Large Wildlife (deer, moose,	of Wildlife Crossing e at / near Structure	
Structure#:	RoadName:	StreamName:					mammals)	coyote, fox)	bear)		
VT07-06-03	HOGBACK RD	Judevine Brook		X	X	-	X	X	X		none,none,none,none

Gully Brook, Traverse Farm Marginal pasture converted to Flood Attenuation Area

Excavate berm and terrace for new floodplain

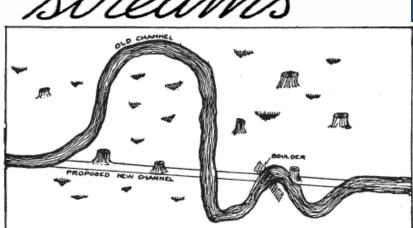
-H 15-146

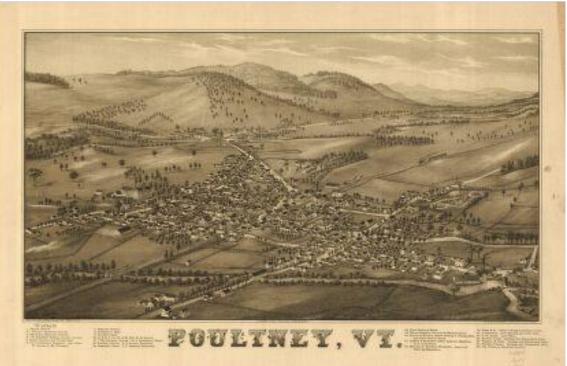
Mix of Passive and Active Restoration Techniques

How DYNAMITE

streamlines streams

Practically every farm in the heavy crop-producing areas of the United States needs some ditching, and there is hardly a stream in the entire boundary of the Union that does not need to be corrected to give better service in discharging the large amounts of waste water from heavy rains, and to protect low lands.




FIG. 54. DIAGRAM OF STREAM TROUBLES THAT MAY BE CORRECTED BY BLASTING.

CROOKED STREAMS are a menace to life and crops in the areas bordering on their banks. The twisting and turning of the channel retards the flow and reduces the capacity of the stream to handle large volumes of water. Floods result. Crops are ruined. Lives are lost. Banks are undermined, causing cave-ins that steal valuable

acreage.

- **200+ years of** Channel, Floodplain and Watershed Modifications:
- > Deforestation
- > Snagging and ditching
- Encroachments, i.e., villages, farms, roads and rails

Dams and diversions
Gravel removal
Channeling - berming
Undersized Culverts
Stormwater

Traditional Approach to River Management: Contain flows within the straightened channel

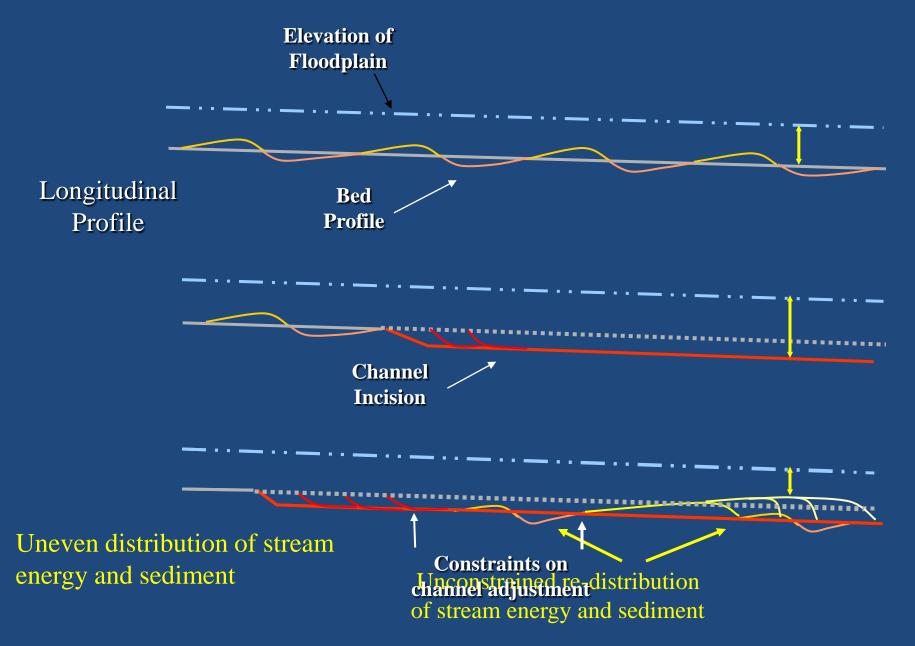
Lesson in VT Trying to stop floods

Is a recipe for erosion.

Escalating Costs, Risks, and Ecosystem Degradation Floods and

Property Damage

Dredge, Berm and Armor

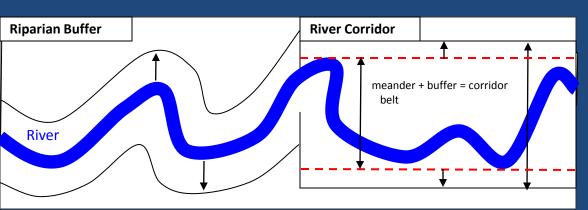

Encroachment

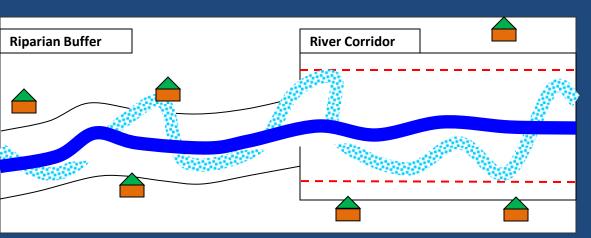
Vermont River Management: Moving away from the concept that rivers are static systems.

Chasing a River

> Repeated and costly efforts to control long lengths of rivers as static channels is proof that channelization with structural measures at a large scale is an unsustainable public policy.

Understand constraints at larger temporal and spatial scales


Rip-rap failing after seven years – ongoing maintenance costs



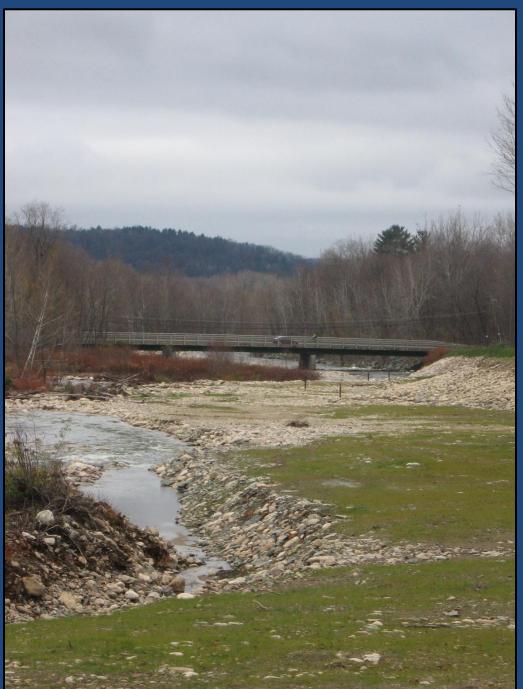
Attenuation asset lost forever?

Message to Towns

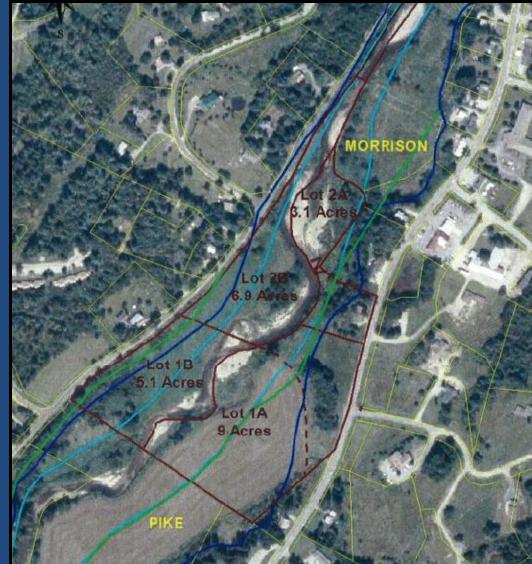
Encroachments on straightened and incised channels equals property loss, high and ongoing costs of managing rivers, and a loss of recovery options (\$\$\$).

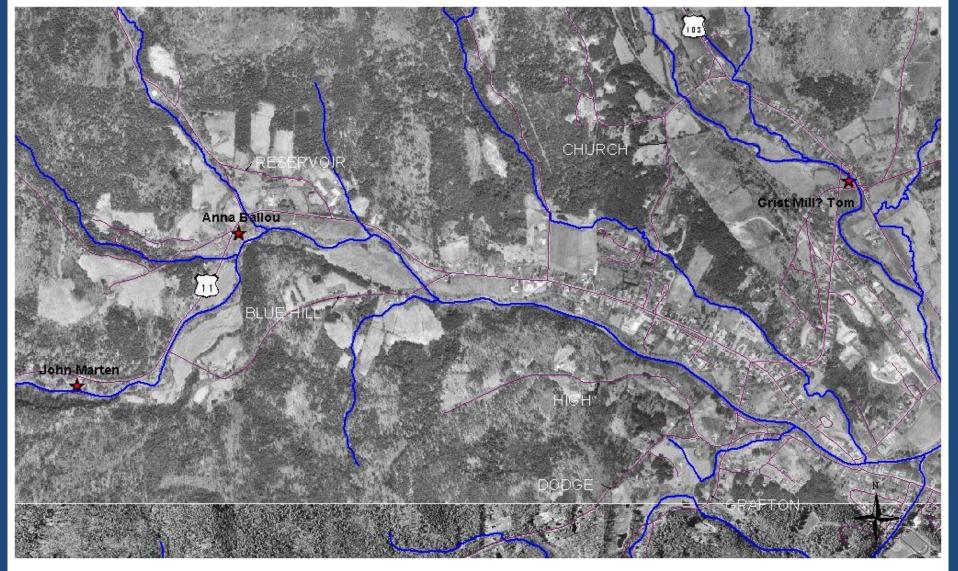
Go beyond the concept of riparian buffers.

Protect river corridors and floodplains to accommodate floods and fluvial processes; distribute and dissipate energy; store sediment and woody debris; and create and maintain habitat.

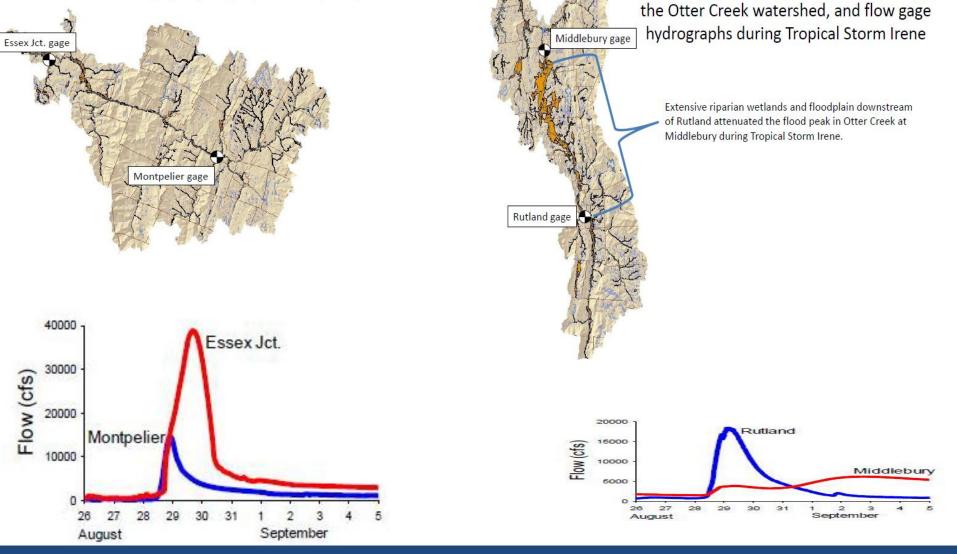

Vermont Rivers and River Corridor Management After Irene

Channelized reaches in traditional downtowns and village districts will continue be managed.


> Phase 1 of the Roaring Branch Floodplain Restoration Project, Bennington



Management of some river reaches should be discontinued


Which river corridors and floodplains should be protected and restored?

> Easement on Key Sediment Attenuation Area in Stowe, VT

Success in limiting stream alterations and protecting river ecology, in post flood situations, will depend on the State's ability to reduce and further limit river corridor encroachments Floodplains (orange) and wetlands (blue) in the Winooski River watershed, and flow gage hydrographs during Tropical Storm Irene

Floodplains (orange) and wetlands (blue) in

Irene flood flow data showing the protection of downstream communities when attenuation assets are in place and functioning.

Climate Change

Randolph, VT after 1927 flood Will we do anything different after the 2027 flood, but "restore" the modified condition?

VT RMP preparing for an increase in the frequency and intensity of floods??

(013-878E-8)(11-8-27-1030A)(12-3000)

BETHER, VT.